

Navigation and Ancillary Information Facility

SPICE Event Finding Subsystem

January 2008

Topics

- Overview
- Eclipse Events
- Occultation Events
- Field-of-View Events
- Numeric Events
- Window Math

Overview

- The NAIF team is working to add a new subsystem to the SPICE Toolkits. This subsystem is designed to identify the times or time intervals of particular geometric events.
 - The Fortran and C Toolkits will contain all planned functionality.
 - Icy and Mice will include a subset of the planned functionality.
- The event subsystem algorithms detect four types of events:
 - Eclipse
 - Occultation
 - Field-of-View
 - Numerical
- The first three types describe a specific set of geometric conditions identified with the corresponding type name. The fourth type describes a geometric quantity satisfying a numeric relationship.
- Status
 - An alpha-test version should be available in the next six months.
 - NAIF has not determined a release date for the official new subsystem.

- The eclipse detection algorithm identifies twelve eclipse configurations (as observed from the eclipsed body).
- Eclipse models assume a <u>spherical</u> shape for eclipser and eclipsed bodies. A <u>sphere</u> or <u>point object</u> can represent the illumination source.

Navigation and Ancillary Information Facility

Eclipser body

- 1: Eclipsed body in full illumination
- 2: Eclipsed body partially illuminated, partially in the penumbra
- 3: Eclipsed body exclusively in the penumbra
- 4: Eclipsed body completely in the umbra (NAIF defines this state as also in the penumbra.)
- 5: Eclipsed body fully in penumbra with complete umbral shadow on body
- 6: Eclipsed body partially in penumbral and partially in umbral regions

Navigation and Ancillary Information Facility

Spherical illumination source

- 7: Eclipsed body partially illuminated with the penumbral shadow completely on body, no umbral shadow
- 8: Eclipsed body in illuminated, penumbral, and umbral regions with full umbral shadow on body
- 9: Eclipsed body in illuminated, penumbral, and umbral regions without full umbral shadow on body

Navigation and Ancillary Information Facility

Spherical illumination source

10: Eclipsed body partially illuminated with the penumbral and umbral shadows both fully on body

Navigation and Ancillary Information Facility

- Eclipsed body
- Eclipser body
- + Point illumination source

- 11: Eclipsed body partially illuminated with full umbral shadow on body, no penumbral shadow
- 12: Eclipsed body partially illuminated, partially in the umbra shadow, no penumbral shadow

Note, these configurations exist only for point illumination sources.

Occultation

Navigation and Ancillary Information Facility

 The occultation detection algorithm identifies configurations with a triaxial ellipsoid modeling the occulting body. A triaxial ellipsoid or point object models the occulted body.

Field-of-View

Navigation and Ancillary Information Facility

- The field-of-view detection algorithm identifies configurations where an instrument field-of-view intersects or contains a body of interest. The instrument's field-of-view properties are defined in a SPICE instrument kernel.
 - The field-of-view detection algorithms answer questions of the form:
 - "Given a time interval [t1, t2] and a body, at what times within [t1, t2] does the body intersect the instrument field-of-view?" (Can I see it, if so, when?)
 - In order to answer questions of the form:
 - "Given a time interval [t1, t2] and a set of bodies, which bodies will intersect the instrument field-of-view across [t1, t2]?" (What can I see?)

The user performs a field-of-view search over [t1, t2] for each body.

Numeric - 1

Navigation and Ancillary Information Facility

- The numerical event detection algorithms identify configurations where a particular scalar geometric quantity satisfies some relationship, as defined by an operator and a reference value, or a unary operator.
- Geometric quantities:
 - Angular separation: observed angular separation between limbs
 - Angular speed: magnitude of angular velocity of apparent target about an observer
 - Angular rate: the time derivative of the apparent angular separation
 - Apparent angular diameter
 - Range: ||r||
 - Range rate: d(||r||)/dt
 - Elongation angle: Sun-observer-target angle
 - Phase angle: observer-target-Sun angle
 - Coordinate: an element of the position vector in a particular coordinate system and reference frame. The position vector is defined as either "observer to target" or "sub observer point on target."
 - » Coordinate systems and the corresponding coordinates:

•	RECTANGULAR:	Χ,	Υ,	Z
•	CYLINDRICAL:	RANGE,	LONGITUDE,	Z
•	GEODETIC:	LONGITUDE,	LATITUDE,	ALTITUDE
•	LATITUDINAL:	RANGE,	LONGITUDE,	LATITUDE
•	RA/DEC:	RANGE,	RIGHT_ASCENSION,	DECLINATION
•	SPHERICAL:	RANGE,	COLATITUDE,	LONGITUDE

Event Finding Subsystem Continued on the next page

11

Numeric - 2

Navigation and Ancillary Information Facility

Applicable operators:

```
> (quantity > reference_value)
```

= (quantity = reference value)

< (quantity < reference_value)

ABSMAX (quantity)

ABSMIN (quantity)

LOCMAX (quantity)

LOCMIN (quantity)

Examples of detectable events using a numeric event search:

- periapsis or closest approach
 - » minimum distance between a body and center or between two bodies
- apoapsis
 - » maximum distance between a body and center
- pointing constraints
 - » angular separation between the look direction and Sun direction
- boundary confinement
 - » a vehicle sub-point on a body lies within a latitude/longitude range
- node crossings
 - » Z coordinate of a body position in equator based frame equals zero

Windows Math

- The events subsystem uses the SPICE windows data type as an input, named the confinement window, to define the time intervals to search. A window is also used as an output, named the result window, during which the event of interest occurs.
 - Windows are collections of zero or more ordered, disjoint intervals of double precision numbers. The event finder subsystem uses windows to define the initial search times and final result times.
 - The Toolkit contains a family of routines for creating windows and performing "set arithmetic" on them (union, intersection, difference, etc.).
- This windows based implementation allows a user to perform multiple searches where the window result of one search is used as the input (confinement) for the next, either to satisfy a restriction on multiple conditions or as a refinement process.
 - Note, the physics of a multi-event geometry may be such that the search for one event will proceed faster than another and markedly reduce the measure of the search space for the next search.

Example - 1

Navigation and Ancillary Information Facility

 Time interval for which the subpoint of a vehicle passes through a latitude/longitude "box."

Example - 2

Navigation and Ancillary Information Facility

 Time intervals for which an orbiter passes in line-of-sight of a station, with a local elevation above 30 degrees, with a maximum distance of 30000 km.

